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Retinitis pigmentosa
Dyonne T Hartong, Eliot L Berson, Thaddeus P Dryja

Hereditary degenerations of the human retina are genetically heterogeneous, with well over 100 genes implicated so 
far. This Seminar focuses on the subset of diseases called retinitis pigmentosa, in which patients typically lose night 
vision in adolescence, side vision in young adulthood, and central vision in later life because of progressive loss of 
rod and cone photoreceptor cells. Measures of retinal function, such as the electroretinogram, show that photoreceptor 
function is diminished generally many years before symptomic night blindness, visual-fi eld scotomas, or decreased 
visual acuity arise. More than 45 genes for retinitis pigmentosa have been identifi ed. These genes account for only 
about 60% of all patients; the remainder have defects in as yet unidentifi ed genes. Findings of controlled trials 
indicate that nutritional interventions, including vitamin A palmitate and omega-3-rich fi sh, slow progression of 
disease in many patients. Imminent treatments for retinitis pigmentosa are greatly anticipated, especially for 
genetically defi ned subsets of patients, because of newly identifi ed genes, growing knowledge of aff ected biochemical 
pathways, and development of animal models.

Retinitis pigmentosa is the term given to a set of hereditary 
retinal diseases that feature degeneration of rod and cone 
photoreceptors. This Seminar will review the current 
status of our knowledge of this disorder, including its 
prevalence and inheritance patterns, symptoms and 
signs, molecular genetics, current treatments, and antici-
pated future treatment approaches.

Prevalence and inheritance patterns 
The worldwide prevalence of retinitis pigmentosa is about 1 
in 4000 for a total of more than 1 million aff ected individuals. 
The disease can be inherited as an autosomal-dominant 
(about 30–40% of cases), auto somal-recessive (50–60%), or 
X-linked (5–15%) trait.1–3 These proportions for inheritance 
patterns assume that all isolated cases—ie, patients with no 
other aff ected relatives—are autosomal recessive, although 
a few might represent new dominant mutations, instances 
of uniparental isodisomy,4,5 or, for males, X-linked mu-
tations. Non-mendelian inheritance patterns, such as 
digenic inheritance and maternal (mitochondrial) inher-
itance, have been reported but probably account for only a 
small proportion of cases.6–10 In a multicentre study from 
Japan including 29 vision rehabilitation centres, retinitis 
pigmentosa was the major cause of visual handicap or 
blindness, accounting for 25% of patients.11 In Kuwait, this 
disease was the leading cause of visual disability in 
individuals younger than 60 years,12 and in Denmark, 
retinitis pigmentosa and optic neuropathy were the leading 
causes of blindness in people aged 20–64 years, each 
accounting for 29% of cases.13

Syndromic retinitis pigmentosa 
Retinitis pigmentosa is a disease usually confi ned to the 
eye. However, some 20–30% of patients have associated 
non-ocular disease, and such cases fall within more than 
30 diff erent syndromes. 

Usher’s syndrome, in which retinitis pigmentosa is 
associated with hearing impairment, is the most frequent 
syndromic form, accounting for about 20–40%14 of 
individuals with recessive disease (or 10–20% of all cases). 
The hearing loss can be either profound, present at birth, 

and associated with vestibular ataxia (Usher’s syndrome 
type I) or moderate to mild in severity and non-progressive 
(type II). Normal hearing can be present in youth but 
during later years gradual hearing loss can occur (type III). 
Alterations in at least 11 genes cause Usher’s syndrome; 
diff erent mutations in some of these genes lead to type I, 
II, or III disease.15 Depending on the mutation, some 
genes for Usher’s syndrome can also cause either retinitis 
pigmentosa without hearing loss4,16,17 or deafness without 
retinitis pigmentosa.18–22

Another major form of syndromic retinitis pigmentosa 
is Bardet-Biedl syndrome, in which retinitis pigmentosa 
is variably associated with obesity, cognitive impairment, 
polydactyly, hypogenitalism, and renal disease (mostly 
structural abnormalities such as calyceal cysts or calyceal 
clubbing and blunting);23,24 some patients develop renal 
failure and need transplantation. Bardet-Biedl syndrome 
accounts for as many as 5–6% of cases of retinitis 
pigmentosa.25,26 Ten genes for Bardet-Biedl syndrome 
have been identifi ed, which cause about 70% of cases.27–29 
Inheritance is generally a mendelian autosomal-recessive 
pattern; however, in some families, mutations at two 
unlinked Bardet-Biedl genes have been recorded,8,30 with 
compound heterozygosity (or homozygosity) present at 
one locus and one mutation at the second.8,29–31 Whether 
the mutation at the second locus is needed to express the 
disease or whether it merely modifi es severity or 
expressivity of mutations at the other locus is still unclear. 
The proportion of Bardet-Biedl families showing digenic 
inheritance might be low.32
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Search strategy and selection criteria

We searched PubMed and EMBASE for the term “retinitis pigmentosa”. Most selected 
publications were from the past 5 years, but we did not exclude commonly referenced 
and highly regarded older publications. We furthermore searched the reference lists of 
articles identifi ed by this search strategy or from our own literature databases. We also 
used the internet database for genetics of retinal diseases (www.sph.uth.tmc.edu/Retnet) 
and the NCBI database Online Mendelian Inheritance in Man (www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db=OMIM). No restriction was applied on the language of publications.



Seminar

1796 www.thelancet.com   Vol 368   November 18, 2006 

Of the many rare syndromic forms of retinitis 
pigmentosa, three are important clinically. In these 
disorders, treatment might be vision-saving if begun 
early: abetalipoproteinaemia (Bassen-Kornzweig syn-
drome); phytanic acid oxidase defi ciency (Refsum’s 
disease); and familial isolated vitamin E defi ciency 
(α tocopherol transport protein defi ciency).33 

Symptoms 
Retinitis pigmentosa is a highly variable disorder; some 
patients develop symptomatic visual loss in childhood 
whereas others remain asymptomatic until mid-
adulthood. Many patients fall into a classic pattern of 
diffi  culties with dark adaptation and night blindness in 
adolescence and loss of mid-peripheral visual fi eld in 
young adulthood. As the disease advances they lose far 
peripheral vision, eventually develop tunnel vision, and 
fi nally lose central vision, usually by age 60 years. 

Visual symptoms indicate the gradual loss of the two 
photoreceptor types (fi gure 1): rods, which mediate 
achromatic vision in starlight or moonlight; and cones, 
which are important for colour vision and fi ne acuity in 
daylight. The outer nuclear layer of the retina consists of 
rod and cone photoreceptor nuclei and is severely 
attenuated in patients with retinitis pigmentosa. The 
inner nuclear layer—composed of amacrine cell, bipolar 
cell, and horizontal cell neurons—and the ganglion-cell 
layer are fairly well preserved, but many of these cells 
degenerate later in the disease.

Most patients are legally blind by age 40 years because 
of severely constricted visual fi elds. In most forms of 
typical retinitis pigmentosa, loss of rod function exceeds 
reduction of cone sensitivity. In other types, rod and cone 

decline is similar. Occasionally, the defi cit of cones far 
exceeds that of rods, which is termed cone-rod 
degeneration,34 a form of retinitis pigmentosa in which 
loss of visual acuity and defective colour vision are the 
prominent early symptoms.

A clinician must be cautious when relying on symptoms 
to identify patients with early retinitis pigmentosa. In our 
electrically illuminated night-time environment, people 
can be unaware of a severe loss of rod function because 
night-time activities are typically done with suffi  cient light 
to allow vision with cones. By the time an individual 
recognises the symptom of night blindness, a reduction 
in cone sensitivity can have happened on top of a loss of 
rod function. Furthermore, no subjective diffi  culties with 
daily tasks may  arise in people with a remaining central 
visual fi eld reduced to about 50 degrees in diameter 
(normal bilateral visual fi eld is about 180 degrees in the 
horizontal meridian).35 Patients can lose 90% of cones in 
the fovea before having a reduction in visual acuity.36 
Reading impairment and diffi  culties in undertaking daily 
activities are typically seen when visual acuities fall below 
0·5 (20/40).37,38 Objective measures of photoreceptor 
sensitivity (see below) are much more reliable than 
symptoms for diagnosis of retinitis pigmentosa and 
grading its severity.

Clinical assessment and fi ndings 
Visual acuity can remain normal even in individuals 
with advanced retinitis pigmentosa with a small island 
of remaining central visual fi eld, or it can be lost early 
in the course of the disorder. Neglect of careful deter-
mination of refractive errors in people with severe 
visual loss can happen, yet patients can be very grateful 
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Figure 1: Histological appearance of healthy human retina (left) and retina of a patient with retinitis pigmentosa at a mid-stage of disease (right)
The space between the retinal pigment epithelium and the outer nuclear layer in the diseased retina is a processing artifact.
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for the modest improvement in vision that spectacles 
might provide. Furthermore, a measure of refractive 
error could give a clue to the inheritance pattern. For 
example, patients with X-linked retinitis pigmentosa 
are likely to have myopia of 2 dioptres or more, whereas 
hyperopia favours a diagnosis of dominant in-
heritance.39,40

Visual fi elds, measured with a Goldmann perimeter 
or a Humphrey fi eld analyser (Carl Zeiss, Dublin, CA, 
USA), typically have scotomas in the mid-periphery that 
enlarge over years owing to loss of rod and cone 
function. In moderate-to-advanced retinitis pigmentosa, 
only small islands of vision remain in the far peripheral 
fi eld and in the visual axis; later these areas of vision 
slowly disappear.

Colour vision assessed with Ishihara plates, the 
Farnsworth D15 panel (Munsell Colour Laboratory; 
Macbeth, New Windsor, NY, USA), or other tests might 
show normal colour vision or a defi ciency in blue cone 
function (acquired tritanopia), which is characteristic of 
advanced retinitis pigmentosa. If a red or green colour 
defi ciency is present, a diagnosis of an anomaly in 
colour vision—eg, X-linked colour blindness present in 
5–8% of all males—or cone-rod or cone degeneration 
should be considered.

The fi nal dark adaptation threshold is a measure of 
the degree of night blindness under moonlight and 
starlight conditions. It is measured after the patient 
adapts to 30 min of darkness with eye patches or by 
being in a completely dark room. The lowest intensity 
of white light that is able to be perceived is then 
measured. If this intensity is at least 100 times brighter 
than normal (ie, the fi nal dark adaptation threshold is 
raised 2 log units or more), a severe loss of rod 
photoreceptor sensitivity has arisen and individuals 
should be cautioned about driving at dusk or at night 
irrespective of the status of their visual acuity or visual 
fi elds. Large increases in threshold indicate a decrease 
in cone photoreceptor sensitivity as well.

Contrast sensitivity is measured with a contrast chart 
(ie, Pelli-Robson chart).41 A decline in contrast sensitivity 
is a common fi nding in patients with retinitis 
pigmentosa,42 and it can account for poor subjective 
vision in those people who have good high contrast 
visual acuity.43

Slit-lamp biomicroscopy and ophthalmoscopy show 
posterior subcapsular cataracts in about 50% of 
individuals with retinitis pigmentosa.39,44–46 Cells in the 
vitreous are commonly seen. Attenuation of retinal 
vessels is an almost universal fi nding (fi gure 2). The 
fundus typically shows intraretinal pigmentation, 
sometimes referred to as bone-spicule deposits because 
of their shape, in the mid-periphery or far periphery 
(fi gure 2). They might be absent, especially early in the 
course of disease.39 Pigment deposits are created when 
the retinal pigment epithelium (a pigmented cell layer 
adjacent to photoreceptors) migrates into the neural 

retina in response to photoreceptor-cell death.47 The 
optic nerve head can have a waxy pale colour (fi gure 2).

Electroretinograms (ERGs) measure the electrical 
response of the retina to fl ashes of light and are recorded 
with either a contact-lens electrode on the topically 
anaesthetised cornea or an electrode applied to the 
eyelid. A single-fl ash dim blue light elicits a rod 
response, a brighter single-fl ash white light elicits a 
combined rod-plus-cone response, and fl ickering 
(30 Hz) white light stimuli generate cone-isolated 
responses (fi gure 3). With single fl ashes (0·5 Hz) of 
white light, an initial a wave shows hyperpolarisation of 
photoreceptors and a subsequent b wave results from 
depolarisation of cells in the inner nuclear layer. 
Patients with retinitis pigmentosa have reduced rod 
and cone response amplitudes and a delay in their 
timing (fi gure 3).48,49 Amplitudes of the a and b waves 
can be either moderately reduced (as in dominant 
disease) or almost non-detectable (as seen in recessive 
and X-linked patients). Time intervals from stimuli to 
peak rod or cone isolated responses are prolonged in 
typical retinitis pigmentosa. ERG amplitudes are 
objective measures of retinal function and are useful 
for accurate diagnosis of disease, for assessment of 
severity,50,51 to follow the course of disease,52,53 to provide 
a visual prognosis,53 and for measurement of responses 
to treatments.53 With conventional recordings without 
computer averaging, most patients have non-detectable 
full-fi eld cone response amplitudes (<10 μV; normal 
≥50 μV) even when they have substantial cone vision; 
with computer averaging, ERG sensitivity is extended 
100-fold. Patients with cone ERG amplitudes as low as 
1 μV or less can still have ambulatory vision and read 
newspapers; most people with amplitudes less than 
0·05 μV are legally blind or have only light perception.54

Optical coherence tomography is a non-invasive 
technique for assessment of the morphology of the 
retina and particularly of the macula. It is especially 
useful in patients with retinitis pigmentosa for measure-
ment of retina thickness, assessment of the status of the 
photoreceptor layer, and determining the presence of 
macular oedema.55–58

Figure 2: Fundi of a healthy individual (left) and a patient with retinitis pigmentosa (right)
In the image of the diseased eye, optic-disc pallor, attenuated retinal arterioles, and peripheral intraretinal pigment 
deposits in a bone-spicule confi guration are seen. 



Seminar

1798 www.thelancet.com   Vol 368   November 18, 2006 

Images of fundus autofl uorescence show that some 
patients with retinitis pigmentosa have raised con-
centrations of lipofuscin in retinal pigment epithelium. 
Regions of the retina with the highest amounts of 
autofl uorescence are those producing the lowest ERG 
amplitudes, as measured with multifocal ERGs.59,60

Course of retinitis pigmentosa 
The age of onset of retinitis pigmentosa typically refers 
to the age at which a patient reports visual symptoms, 
and it can range from early childhood to adulthood. 
Because of the striking variation in how aware 
individuals are of their visual loss, the age of onset of 
symptoms is an imprecise measure of disease severity, 
and it gives little or no indication of when photoreceptor 
degeneration actually begins. ERGs and other tests 
show that photoreceptor degeneration is already present 
as early as age 6 years, even in patients who remain 
asymptomatic until young adulthood.61 Clinical 
examinations, especially those including objective 
quantitative measures of retinal function, are crucial to 
describe accurately the degree of visual compromise 
and rate of its decline. This information is necessary to 
give a prognosis for vision customised to every patient. 
Individuals older than age 6 years with normal ERGs 
have not been reported to develop typical retinitis 
pigmentosa at a later time.61

In general, retinitis pigmentosa is a progressive 
disease with an apparently exponential decline62 in 
remaining visual-fi eld area (2·6–13·5% loss 
annually)34,63,64 and ERG amplitude (8·7–18·5%).34,63,65 
Variations in reported rates of decline have been 
attributed to stage of disease, environmental and dietary 
factors, primary gene defects, and possible modifi er 
genes. Visual acuity better than 0·1 (20/200) refl ects the 
function of foveal cones and, since the fovea is generally 
the last region of the retina to deteriorate, good acuity 
can persist for many years in patients with only tiny 
islands of remaining peripheral visual fi eld and very 
low ERG amplitudes.52 Thus, clinical trials and studies 
to monitor progression of disease usually include visual 
fi elds and ERG amplitudes. However, subjective visual 
handicap correlates best with visual acuity and less well 
with visual fi eld and ERG amplitudes.66

Causal genes 
Most cases of retinitis pigmentosa are monogenic, but 
the disease is nevertheless very heterogeneous 
genetically. Investigators have identifi ed at least 45 loci 
so far at which mutations cause the disorder, and these 
genes collectively account for disease in a little over half 
of all patients (fi gure 4). Most genes for retinitis 
pigmentosa cause only a small proportion of cases 
(fi gure 4), exceptions being the rhodopsin gene (RHO), 
which leads to about 25% of dominant retinitis 
pigmentosa, the USH2A gene, which might cause 
about 20% of recessive disease (including many with 
Usher’s syndrome type II), and the RPGR gene that 
accounts for about 70% of X-linked retinitis pigmentosa. 
In aggregate, mutations in RHO, USH2A, and RPGR 
genes cause about 30% of all cases of retinitis 
pigmentosa.

Aff ected biochemical pathways 
The table categorises currently identifi ed genes for 
retinitis pigmentosa according to the known or 
presumed function of the encoded proteins. Some of 
the genes normally encode proteins in the rod 
photoreceptor cascade, a specifi c biochemical pathway 
that transduces light and leads to changes in photo-
receptor-cell polarisation. Recessive null mutations in 
any of these genes would evidently interfere with rod 
function and produce night blindness from birth. 
Subsequent death of rod photoreceptors is probably an 
outcome of the deranged physiology associated with the 
defective or absent gene product. For example, without 
functional rod cGMP-phosphodiesterase, which arises 
with recessive defects in PDE6A or PDE6B, cGMP 
concentrations in photoreceptor outer segments rise, 
which in turn opens an excessive proportion of 
cGMP-gated cation channels in the plasma 
membrane.164–166 Rods apparently die from the rush of 
cations fl owing into the cell through these open 
channels. As another example, dominant rhodopsin 
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Figure 3: ERG responses from a healthy individual and from three patients with early retinitis pigmentosa 
inherited as an autosomal-dominant, autosomal-recessive, or X-linked trait
RP=retinitis pigmentosa. a=a wave. b=b wave. Vertical dotted lines (left and centre columns) and vertical shock 
artifacts (right column) represent stimuli. Arrows indicate response times (called implicit times). Figure modifi ed 
from Berson EL. Retinitis pigmentosa and allied diseases: electrophysiologic fi ndings. 
Trans Am Acad Ophthalmol Otolaryngol 1976; 81: 659–66, with permission of the American Academy of 
Ophthalmology.
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ARL6, BBS5, BBS7,
TTC8, PTHB1 1·1% 

CNGA1 1%
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Figure 4: Genes and their relative contribution to retinitis pigmentosa
Causal genes and their contributions to (A) autosomal-recessive disease (ARRP), including Usher’s and Bardet-Biedl (BBS) syndromes, (B) autosomal-dominant 
disease, and (C) X-linked disease. About 40% of cases are due to genes that are as yet undiscovered. In A, these cases are represented by three pie slices named 
unknown non-syndromic retinitis pigmentosa 30%; unknown BBS 3%; and part of MASS1, USH2B, and unknown 10%. All digenic cases with RDS/ROM1 
mutations are included in the dominant category. The fi gure does not include Leber congenital amaurosis, cone-rod dystrophy, macular degeneration, or cases 
with maternal inheritance (eg, Kearns-Sayre syndrome). For some genes, only one or a few families have been reported with mutations; in these cases, we have 
arbitrarily set the gene frequency at 1%. Our estimates for the proportions of cases accounted for by every gene are based on data from the following articles. 
Autosomal-recessive retinitis pigmentosa: ABCA4;67 CERKL;68 CNGA1;69 CNGB1;70 CRB1;71 LRAT;72 MERTK;73 NR2E3;74,75 NRL;76 PDE6A;77 PDE6B;78,79 RGR;80 RHO;81,82 
RLBP1;83,84 RP1;85,86 RPE65;87 SAG;88 TULP1;89 USH2A;90,91 Bardet-Biedl syndrome;27,29,92 Usher’s syndrome type I;93 USH3A.94 Autosomal-dominant disease: RHO;67,69,95–97 
RP1;97,98 PRPF31 (unpublished data from the authors); PRPF3 (unpublished data from the authors); RDS/ROM1;99 PRPF8 (unpublished data from the authors); 
IMPDH1;100,101 NRL;102 CRX;97,103 CA4(RP17);104 FSCN2;105 GUCA1B;106 RP9;107 SEMA4A.108 X-linked disease: RPGR and RP2;109,110 RP6, RP23, and RP24 are mapped to X 
chromosome but remain unidentifi ed.111–113
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mutations are probably detrimental to rods because the 
mutant forms of rhodopsin are toxic to rod photo-
receptors. The toxic eff ects are attributable to interference 
with metabolism, perhaps by formation of intracellular 
protein aggregates, from a defect in intracellular 
transport, or from a fault in the structure of the 
photoreceptor outer segments.167–173

Why do mutations in genes that are exclusively 
expressed in rod photoreceptors cause the death of both 
rod and cone cells? The secondary death of cones might 
indicate their as yet unexplained reliance on 
neighbouring rods for survival. Understanding the 
interaction between rods and cones, and the factors 
from rods that promote cone survival, might provide 
clues to treatments.174,175

Some genes for retinitis pigmentosa are expressed in 
tissues outside the eye, and some encode proteins that 
are essential for life. For example, the dominant genes 
PRPF31, PRPF8, and PRPF3 encode components of the 
spliceosome, a vital complex that excises introns from 
RNA transcripts. These proteins are highly conserved 
in eukaryotes ranging from mammals to yeast, so the 
fact that mutations in these factors lead to retinitis 
pigmentosa without other evidence of systemic disease 
in patients is especially fascinating. 

Treatment 
Based on a study of the natural course of retinitis 
pigmentosa,63 patients who happen to be taking 
vitamin A, vitamin E, or both were recorded to have 
slower declines in ERG amplitudes than those not 
taking such supplements.53 This observation prompted 
a randomised clinical trial of oral vitamin A and E 
supplements in 601 patients with dominant, recessive, 
and X-linked non-syndromic retinitis pigmentosa and 
Usher’s syndrome type II.53 Participants were randomly 
assigned either daily vitamin A as retinyl palmitate 
15 000 IU, vitamin E 400 IU as dl-α-tocopherol, the 
combination, or trace amounts of both vitamins; 
follow-up was for 4–6 years. Patients assigned high-dose 
vitamin A showed a signifi cantly (p=0·01) slower 
decline in cone ERG amplitudes than did those in the 
other groups. Diff erences were more pronounced 
(p<0·001) in a subgroup of 354 individuals with higher 
initial cone ERG amplitudes; in these people, a 
signifi cant (p=0·04) negative eff ect of vitamin E was 
also recorded.53 

Critics of the trial pointed out that measures of retinal 
function other than cone ERG—such as visual-fi eld 
area and visual acuity—did not diff er signifi cantly 
between groups,176 and that results with cone ERGs 
were of only modest signifi cance.177 However, visual-fi eld 
area has substantial inter-visit variability, so that a small 
change in the decline of visual-fi eld area would probably 
not have been detectable with the study design. In a 
subsequent analysis of 125 participants who did 
visual-fi eld tests with the greatest precision (≤5% 
inter-visit variability), those assigned vitamin A showed 
a signifi cantly slower loss of fi eld than did those not 
taking vitamin A.178,179 Furthermore, in most patients, 
visual acuity declines slowly or not at all in earlier 
stages,180 and thus to note a therapeutic eff ect would 
need a larger or longer study than was undertaken. As 
far as we are aware, no clinical trials by other groups to 

Inheritance

Phototransduction cascade

RHO, rhodopsin (G-protein coupled photon receptor)114 Dominant, recessive

PDE6A, rod cGMP-phosphodiesterase α subunit (G-protein eff ector enzyme)115,116 Recessive

PDE6B, rod cGMP-phosphodiesterase β subunit (G-protein eff ector enzyme)115,116 Recessive

CNGA1, rod cGMP-gated cation channel α subunit117 Recessive

CNGB1, rod cGMP-gated cation channel β subunit118–120 Recessive

SAG, arrestin (rhodopsin deactivation)121 Recessive

Vitamin A metabolism

ABCA4, ATP-binding cassette protein A4 (photoreceptor disc membrane fl ippase 
for vitamin A)122,123

Recessive

RLBP1, retinaldehyde binding protein (11-cis-retinaldehyde carrier)124 Recessive

RPE65, (vitamin A trans-cis isomerase)125,126 Recessive

LRAT, lecithin retinol acetyltransferase (synthesises vitamin A esters)125 Recessive

RGR, RPE-vitamin A G-protein coupled receptor (photon receptor in RPE)127 Recessive

Structural or cytoskeletal

RDS, peripherin (outer disc segment membrane protein)128,129 Dominant, digenic

ROM1, rod outer segment protein130 Digenic

FSCN2, fascin (actin bundling protein)131,132 Dominant

TULP1, tubby-like protein 1133 Recessive

CRB1, crumbs homologue (transmembrane protein, adherent junctions)134 Recessive

RP1, microtubule-associated protein (microtubule formation and stabilisation)135 Dominant, recessive

Signalling, cell-cell interaction, or synaptic interaction

SEMA4A, semaphorin B, transmembrane immune system protein136 Dominant

CDH23, cadherin 23 (adhesion receptor)137,138 Recessive

PCDH15, protocadherin 15 (adhesion receptor)139 Recessive

USH1C, Usher’s syndrome type 1C (integrating scaff old protein harmonin)140 Recessive

USH2A, Usher’s syndrome type IIA (Usher’s network protein)140 Recessive

MASS1, monogenic audiogenic seizure susceptibility 1 (Usher’s network protein)140 Recessive

USH3A, Usher’s syndrome type IIIA (transmembrane protein clarin 1)141 Recessive

RP2, plasma membrane associated protein142 X-linked

RNA intron-splicing factors

PRPF31, precursor mRNA-processing factor 31 (spliceosome component)143 Dominant

PRPF8, precursor mRNA-processing factor 8 (spliceosome component)144 Dominant

PRPF3, precursor mRNA-processing factor 3 (spliceosome component)145,146 Dominant

RP9, PIM1-associated protein (RNA splicing factor)147 Dominant

Traffi  cking of intracellular proteins

MYO7A, myosin 7A (melanosome motility protein)148 Recessive

USH1G, scaff old protein containing ankyrin repeats and SAM domain (Usher’s 
type I protein traffi  c regulator)149

Recessive

(Continues on next page)
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assess the eff ectiveness of vitamin A supplements have 
been undertaken.

Based on these results, many clinicians recommend 
that adults with early or middle stages of retinitis 
pigmentosa take 15 000 IU of oral vitamin A palmitate 
every day and avoid high-dose vitamin E supplements. 
β carotene is not a suitable substitute for vitamin A because 
it is not reliably converted to vitamin A. People on this 
regimen should have annual measurements of fasting 
vitamin A concentrations in serum and liver function, 
although no cases of toxic eff ects have been reported.181 
Older individuals should also be monitored for bone health 
because a slight increased risk for hip fractures from 
osteoporosis has been reported in postmenopausal women 
and men older than 49 years who take vitamin A 
supplements.182,183 Because of an enhanced risk for birth 
defects, high-dose vitamin A supplements are not 
recommended for women who are pregnant or planning to 
conceive.184 No children younger than age 18 years were 
included in the study, nor were people with less common 
forms of retinal degeneration (eg, cone-rod degeneration, 
Leber congenital amaurosis, and many syndromic forms of 
retinitis pigmentosa), and thus no formal recommendation 
can be made for them about vitamins A and E.

Another nutritional treatment assessed for patients 
with retinitis pigmentosa is docosahexaenoic acid (DHA), 
an omega-3 fatty acid found in high concentrations in 
oily fi sh such as salmon, tuna, mackerel, herring, and 
sardines. DHA is apparently important for photoreceptor 
function, since membranes containing rhodopsin and 
cone opsins in photoreceptor cells have very high 
concentrations of this fatty acid.185 Amounts of DHA in 
red-blood cells are on average lower in patients with 
retinitis pigmentosa than in unaff ected people, but 
whether the diff erence is attributable to a speculative 
metabolic variation or to changes in diet or other factors 
is unknown.186,187 Results from two independent studies of 
oral DHA supplements for individuals with retinitis 
pigmentosa, one consisting of 44 males with X-linked 
disease and the other of 208 patients with various 
inheritance patterns, did not show a clear benefi t for the 
treatment based on the original outcome measures.186,188 
However, in both studies, people with the highest 
concentrations of DHA in red-blood cells (combining 
patients on supplements and controls who possibly had 
high amounts from their diet) had the slowest rates of 
retinal degeneration.186,189 Furthermore, analysis of the 
control group in the larger study—ie, 110 participants 
receiving vitamin A and placebo—showed that those 
with a diet containing at least 1·4 g of omega-3 fatty acids 
per week (equivalent to two 90 g servings of oily fi sh per 
week) lost visual fi eld at a rate 40–50% slower than those 
eating less omega-3 fatty acids. Possibly, if the slower rate 
of degeneration were sustained for a long period, the 
combined benefi t of vitamin A and oily fi sh could provide 
almost 20 additional years of visual preservation for the 
average patient who starts this regimen in their mid-30s.189 

Some clinicians, therefore, recommend that adults with 
typical retinitis pigmentosa should follow this regimen.

Patients with three rare syndromic forms of retinitis 
pigmentosa can also benefi t from specifi c dietary modi-
fi cation and nutritional supplements. First, individuals 
with abetalipoproteinaemia (Bassen-Kornzweig disease) 
have low concentrations of apolipoprotein B in plasma 
and have fat malabsorption, which results in low amounts 
in plasma of fat-soluble vitamins. Besides retinitis 
pigmentosa, patients develop ataxia, peripheral neuro-
pathy, and steatorrhoea. High oral doses of vitamin A 
result in acute restoration of retinal function in the early 
stages of the disease.190,191 Addition of vitamin E has been 
reported to stabilise the disorder.192 Second, phytanic acid 
oxidase defi ciency (Refsum’s disease) is associated with 
cardiac conduction defects, ataxia, polyneuropathy, deaf-
ness, anosmia, dry skin, and retinitis pigmentosa. Dietary 
modifi cation to severely reduce intake of phytanic acid 
while maintaining bodyweight can slow or stop pro-
gression of this form of retinitis pigmentosa.193 Finally, 
familial isolated vitamin E defi ciency (α tocopherol 
transport protein defi ciency) can cause adult-onset 
ataxia, dysarthria, reduced touch and position sense, and 
retinitis pigmentosa. Treatment with vitamin E has been 
reported to halt progression of this disease.194

Reduction in exposure to light is postulated to be 
benefi cial for patients with retinitis pigmentosa. This 

(Continued from previous page)

Maintenance of cilia/ciliated cells (possible role in intracellular traffi  cking)

BBS1, Bardet-Biedl syndrome 1150 Recessive

BBS2, Bardet-Biedl syndrome 2150–152 Recessive

ARL6, ADP-ribosylation factor like 6150 Recessive

BBS4, Bardet-Biedl syndrome 4150,153 Recessive

BBS5, Bardet-Biedl syndrome 5150,154 Recessive

MKKS, McKusick-Kaufman syndrome150,155 Recessive

BBS7, Bardet-Biedl syndrome 7150,156 Recessive

TTC8, tetratricopeptide repeat domain 8150,156,157 Recessive

PTHB1, parathyroid hormone-responsive B1 gene150 Recessive

RPGR, traffi  cking of proteins in the cilia 158,159 X-linked

pH regulation (choriocapillaris)

CA4, carbonic anhydrase IV (carbon dioxide/bicarbonate balance)160 Dominant

Phagocytosis

MERTK, mer tyrosine kinase proto-oncogene (RPE receptor involved in outer 
segment phagocytosis)161

Recessive

Other

CERKL, ceramide kinase-like (ceramide converting enzyme)162 Recessive

IMPDH1, inosine-5’ monophosphate dehydrogenase type I (guanine nucleotide 
synthesis)163

Dominant

BBS10, vertebrate-specifi c chaperonin-like protein29 Recessive

RPE=retinal pigment epithelium. 

Table: Genes for retinitis pigmentosa and functions of their protein products
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hypothesis is lent support by fi ndings in two animal 
models of the disease (both with rhodopsin mutations), 
in which constant darkness was associated with a 
reduction in the rate of degeneration195 or in which brief 
exposures to bright light hastened loss of photoreceptors.196 
Two patients (one later found to have digenic retinitis 
pigmentosa with mutations in the RDS and ROM1 
genes)99 tested the eff ect of light deprivation on their 
retinitis pigmentosa by occluding one eye for 6 h per day 
for 5 years.197 No diff erence in the extent of retinal 
degeneration was recorded between occluded and 
unoccluded eyes. Separately, an individual with retinitis 
pigmentosa had a monocular occlusion of the pupil from 
childhood trauma, causing more than a tenfold reduction 
in light to the retina; the pupil was surgically opened 
40 years later, yet the traumatised eye had a funduscopic 
appearance and ERGs equivalent to the fellow eye.198 As 
far as we know, no studies of light exposure with many 
patients, either prospective or retrospective, have been 
undertaken. The benefi t of modulation of light exposure 
for individuals with certain genetically defi ned forms of 
retinitis pigmentosa remains to be established.

Some measures do not directly benefi t the retina but 
nevertheless help patients with vision loss related to 
retinitis pigmentosa. Cataract extraction is indicated in 
individuals with lens opacities that substantially reduce 
distance and near vision. Carbonic anhydrase inhibitors 
can provide transient improvement in visual acuity in 
people with oedema of the macula.199,200 Patients should 
be encouraged to visit vision-rehabilitation clinics, at 
which (for example) a night vision pocket scope or 
goggles201,202 or a wide-angle mobility lamp203 could be 
off ered to improve night vision. Hand-held and computer 
magnifi cation devices could boost reading vision in 
individuals with advanced disease.

The future 
With knowledge of causal genes in more than half of 
patients with retinitis pigmentosa, and increasing 
knowledge about associated biochemical defects, many 
clinicians are optimistic that novel treatments for the 
disorder will soon be developed. Many mechanistically 
diverse approaches to treat retinitis pigmentosa are being 
investigated. These include: 1) gene-specifi c approaches; 
2) interventions in secondary biochemical pathways that 
could benefi t groups of patients with various gene 
defects; 3) transplantation to replace lost retinal tissue; 
and 4) implanted electrical devices. 

Gene-therapy approaches are dependent on the type of 
mutation. Recessively inherited diseases typically result 
from alterations that eliminate the encoded protein 
(loss-of-function mutations). For this type of genetic 
change, introduction of a normal copy of the gene into 
the diseased tissue (gene-replacement treatment) might 
induce local production of the missing protein. One 
notable gene-replacement approach to a form of retinitis 
pigmentosa is on the verge of human trials. The target 

gene is RPE65, which encodes the isomerase in the 
retinal pigment epithelium that is essential for 
production of the photopigment 11-cis-retinal. In patients 
and animal models without this enzyme owing to 
recessive RPE65 mutations, many photoreceptors 
survive for a long time after severe visual loss.55,204,205 By 
transiently providing 11-cis-retinal or a related 
photopigment pharmacologically, these cells are seen to 
be functional.55,206 A window of opportunity is therefore 
available during which replacement of the RPE65 gene 
might restore vision. Subretinal injection of 
adeno-associated virus vectors containing the RPE65 
gene has shown success in restoring vision in mice and 
dogs with mutations in RPE65.204,207–212 Gene-replacement 
treatment has also been successful in animal models of 
other genetically identifi ed forms of retinitis 
pigmentosa,213–218 but many of the approaches will not be 
easily transferred to human beings. One diffi  culty is that 
many patients have already lost all or nearly all rod 
photoreceptors and are hoping for a treatment to save 
the few remaining cone photoreceptors. Techniques 
such as optical coherence tomography will be valuable 
adjuncts in clinical trials since they can provide a 
measure of the status of the photoreceptor cell layer and 
establish whether patients with vision loss have cells 
available for rescue.57,58,204

Dominantly inherited mutations typically alter the 
transcribed aminoacid sequence and result in toxic 
variants of the encoded protein (termed gain-of-function 
mutations). One strategy to treat these alterations is to 
eliminate the mutant gene (gene silencing) and hope 
that the remaining normal copy of the gene will provide 
suffi  cient functional protein. Current experimental 
approaches to accomplish this aim include ribozyme-
based or interference RNA (RNAi)-based gene therapy to 
inactivate or reduce expression of specifi c dominant 
alleles.219–223 

Nutritional or neuroprotective treatments or approaches 
that aff ect secondary biochemical pathways have the 
advantage of being less dependent on the disease-causing 
mutation than genetic strategies and could therefore be 
widely applicable—eg, treatment might interfere with 
apoptosis.224–228 Findings of work done in animals have 
shown that some neurotrophic factors can promote 
photoreceptor survival.174,175,229–232 Results of a human 
phase I study of an intravitreal capsule containing cells 
that release ciliary neurotrophic factor have been 
reported.233 Of some concern, one patient in the study 
had a decline in ERG amplitudes; however, the same 
individual and some others had improvements in visual 
acuity over the 6-month duration of the study.

Small-molecule drugs are also being assessed as 
possible treatments for forms of retinitis pigmentosa. 
For example, in a study of a calcium-channel blocker 
(diltiazem), researchers claimed a benefi cial eff ect in a 
mouse model of a form of recessive retinitis pigmentosa 
due to recessive mutations in the β subunit of rod 
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phosphodiesterase.234 However, three subsequent trials of 
this drug in mice and other animal models by independent 
groups failed to confi rm a benefi t.235–237

Many research groups are studying the potential value 
of transplantation of the retinal pigment epithelium,238–242 

photoreceptors,243 or stem cells.244–251 Results of trans-
plantation of retinal pigment epithelium have shown a 
slight increase in visual acuity in one patient;252 a phase II 
clinical trial is ongoing. Stem cells have been shown to 
diff erentiate into cells that express retina-specifi c 
markers.244–247 Embryonic stem cells transplanted in rats 
and mice integrate into the host retina248,249 and seem to 
protect host retinal neurons.248 

Devices to electrically stimulate the retina, optic nerve, 
or visual cortex are being developed and tested in animal 
models and patients.253–260 The few people tested with the 
fi rst versions of these devices have reported seeing 
phosphenes (fl ashes of light) in response to direct retinal 
stimulation.261–264

In view of the growing research eff ort on therapeutic 
approaches for retinitis pigmentosa, new treatments for 
some forms of the disease will probably be helping 
subsets of patients within the next 5–10 years. Strategies 
to save or restore vision in all individuals might need 
many decades of research.
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