•What comprises ocular surface?

•Corneal and conjunctival epithelium and tear film

•What are the functions of the tear film?

•Smooth refractive surface for clear vision, Removal of debris, First line of defense and Supply of oxygen and growth factors.

•Which glands contribute to the tear film ?

•Goblet cells, Meibomian glands, Lacrimal glands, Accessory lacrimal glands (Krause and Wolfring), Sebaceous glands (Zeis and Moll)

Describe the structure of the tear film and functions of each layer.

Mucin layer, aqueous layer and lipid layer.

Functions

Lipid layer: retards evaporation, optical properties, hydrophobic barrier to prevent tear overflow, prevent damage to lid margin skin

Aqueous layer: Oxygen supply, maintain electrolyte composition, antibactererila and antiviral, wash away debris

Mucin layer: trap cellular debris, foreign particles and bacteria, lubriacate the eyelids as they pass over the globe.

Failure to form adequate tear film results in dry eye (keratoconjunctivitis sicca).

Compostion	98.2 % water and 1.8 % solid
Volume	7.4 μl
Secretary rate	3.8 μl/ min
Turnover rate	12-16%/min
Evaporation rate	0.06 μ <mark>l/cm²/min</mark>
Osmolarity	296-308 mOsm/L
рН	6.5-7.6

Tear layer	Origin	Components	Physiological functions
Lipid layer	Meibomian gland Accessory lacrimal glands	Wax, cholesterol, fatty acid ester	Lubrication, prevention of evaporation, stabilization
Aqueous layer	Lacrimal gland Accessory lacrimal gland	Water Electrolyte: Na ⁺ , K [*] , Cl ⁻ , HCO ₃ ⁻ , Mg ²⁺ Proteins: albumin, lysozyme, lactoferrin, transferrin, ceruloplasmin, immunoglobulins (IgA, IgG, IgE, IgM) Cytokines, growth factors: EGF, TGF-α, TGF-β1, TGF-β2, bFGF, HGF, VEGF, substance P Other: glucose, vitamins	Lubrication, antimicrobial, bacteriostasis, oxygen supply, nutritional supply, mechanical clearance, regulation of cellular functions
Mucous layer	Conjunctival goblet cells, conjunctival epithelial cells, corneal epithelial cells	Sulfomucin, cyalomucin, MUC1, MUC4, MUC5AC	Lowered surface tension, stabilization of aqueous layer

What provides stability to the tear film on the ocular surface

MUC gene	Гуре
MUC1 MUC2 MUC4 MUC5AC MUC5B	Membrane bound Secretory, Membrane-bound, soluble form, Secretory, gel forming Secretory, gel forming

Epithelial cell. Schematic of 3',5'-cyclic adenosine monophosphate (*cAMP*)dependent signaling pathway activated by vasoactive intestinal polypeptide (*VIP*) or norepinephrine to stimulate mucin, protein, or electrolyte and water secretion in epithelial cells. 5' *AMP* = adenosine 5'-monophosphate, *ATP* = adenosine 5'-triphosphate, $G_{\beta,\gamma} = \beta$ - and γ -subunits of guanine nucleotide-binding protein, G_{sa} = stimulatory α -subunit of guanine nucleotide-binding protein, *GDP* = guanosine 5'-diphosphate, *Protein-P* = phosphorylated (activated) protein. (*Modified from Dartt DA. Regulation of tear secretion.* Adv Exp Med Biol. 1994;350:5.)

Epithelial cell. Schematic of Ca²⁺/protein kinase C-dependent signal transduction pathway activated by cholinergic and α_1 -adrenergic agonists in epithelial cells to stimulate mucin, protein, or electrolyte and water secretion. ACh = acetylcholine, $Ga_{q/11} = q/11$ subtype of guanine nucleotide-binding protein, *Protein-P* = phosphorylated (activated) protein. (From Dartt DA. Regulation of tear secretion. Adv Exp Med Biol. 1994;350:4.)

Inflammatory mediators in keratoconjunctivitis sicca. *MMPs* = matrix metalloproteinases. (*Reproduced with permission from Pflugfelder SC. Antiinflammatory therapy for dry eye.* Am J Ophthalmol. 2004;137(2):338.)

• Tear Film Dysfuction will be discussed by:

- Dr. Francis Mah
- Date: 08/26/2009 7:00am Pharmacology/Dry
 Eye & Anti Inflammatory compounds

TEAR SECRETION

Schirmer I Schirmer II (reflex tear secretion in response to nasal stimulation) Phenol Red Thread Test Meniscometry (tear meniscus radius)

TEAR FILM STABILITY

Tear Break-Up Time Ocular Protection Index Tear Film Stability Analysis System (videoscopy)

TEAR TURNOVER

OCULAR SURFACE EVALUATION

Fluorescein Rose Begal Lissamine Green

TEAR FILM OSMOLARITY

Tear Film Osmolarity Tear Ferning Tear Evaporation

LIPID LAYER EVALUATION

Interferometry Meibometry

Corneal epithelium is generated from Limbal Stem Cells

Views of the palisades of Vogt

Model of the limbal stem cell niche

Intrinsic differences between stem cells and transient amplifying cells

Stem cells

- Resistant to tumor promoters
- Poorly differentiated with primitive cytoplasm
- High capacity for error-free self renewal
- Slow cycling during homeostasis
- Long life span

Transient amplifying cells

- Susceptible to tumor promoters
- Less primitive than differentiated cells
- Differentiate into post-mitotic and terminally differentiated cells
- Divide more frequently
- Limited proliferative potential

Net negative 30 mV

Neurotransmitters and transport mechanisms in the corneal epithelium [5, 11, 17, 55, 57, 58, 104, 110]. Ach = acetylcholine; AC = adenylate cyclase; β = beta receptor; GC = guanylate cyclase; Lac = lactate; M = muscarinic receptor; NE = norepinephrine; cAMP = adenosine 3':5'-cyclic phosphate; ATP = adenosine triphosphate; cGMP = guanosine 3':5' -cyclic phosphate; GTP = guanosine triphosphate.

Amphotericin B and Ag⁺ create cation channels Ouabain inhibits Na⁺ transport inhibit Catecholamines stimulate Propranolol and timolol block

Cl⁻ secretion

