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� Abstract
The cornea is a major protective shield of the interior of the eye and represents two
thirds of its refractive power. It is made up of three tissue layers that have different de-
velopmental origins: the outer, epithelial layer develops from the ectoderm overlying
the lens vesicle, whereas the stroma and the endothelium have mesenchymal origin. In
the adult organism, the outermost corneal epithelium is the most exposed to environ-
mental damage, and its constant renewal is assured by the epithelial stem cells that re-
side in the limbus, the circular border of the cornea. Cell turnover in the stromal layer
is very slow and the endothelial cells probably do not reproduce in the adult organism.
However, recent experimental evidence indicates that stem cells may be found in these
layers. Damage to any of the corneal layers leads to loss of transparency and low vision.
Corneal limbal stem cell deficiency results in severe ocular surface disease and its treat-
ment by transplantating ex vivo expanded limbal epithelial cells is becoming widely
accepted today. Stromal and endothelial stem cells are potential tools of tissue engineer-
ing and regenerative therapies of corneal ulcers and endothelial cell loss. In the past few
years, intensive research has focused on corneal stem cells aiming to improve the out-
comes of the current corneal stem cell transplantation techniques. This review sum-
marizes the current state of knowledge on corneal epithelial, stromal and endothelial
stem cells. Special emphasis is placed on the molecular markers that may help to iden-
tify these cells, and the recently revealed mechanisms that could maintain their
‘‘stemness’’ or drive their differentiation. The techniques for isolating and culturing/
expanding these cells are also described. ' 2008 International Society for Advancement of

Cytometry
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THE cornea is the anterior, transparent part of the eye, a circular window with high

refractive power that directs light bundles to the retina. Besides its optical functions

it is also a very important protecting shield, defending the interior structures of the

eye from damage. To fulfill these tasks, it has to possess a mirror-like smooth surface,

transparent and avascular substantia propria as well as enough tensile strength and

flexibility to resist mechanical damage and keep proper shape. This highly specialized

structure consists of five layers (Fig. 1A). The outer surface is covered by the corneal

epithelium, a stratified squamous nonkeratinizing epithelium, which continues into

the conjunctival epithelium at the edges of the cornea, called the limbus (Fig. 1B).

The second layer is the Bowman’s layer. It is the outer, acellular zone of the stroma.

The third layer, the corneal stroma, makes up about 80% of the corneal thickness

and consists of a densely packed yet transparent connective tissue, the transparency

of which is thought to originate from its regularly ordered and equally spaced col-

lagen bundles, produced by the corneal fibrocytes called keratocytes. The next layer is

the Descemet’s membrane, which is the thick basement membrane of the innermost

layer, the endothelium. The endothelium separates the cornea from the aqueous
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humor of the anterior chamber of the eye, provides the stro-

mal keratocytes with nutrients and participates in the mainte-

nance of stromal transparency via its transport functions.

Insufficiency of this pump function can result in corneal

oedema, which leads to loss of corneal clearness and low

vision. The stroma continues into the sclera at the limbus and

the endothelium is connected through a so called transition

zone with the trabecular meshwork, continuing into the ante-

rior surface of the iris and the suprachoroidal space (Fig. 1C).

At the limbal zone, where corneal tissues give place to

other tissues of the eye, corneal structure changes. The epithe-

lium thickens and forms epithelial pegs made up of 10–12 cell

layers instead of the five layers observed in the central cornea.

The Bowman’s layer is missing and the undulated epithelial

basement membrane lies directly above the limbal stroma, in

which the collagen bundles become less organized and cells

are abundant and fibroblast like. In the beginning of the 19th

century, ophthalmologists who observed the limbal cornea by

slitlamp microscopy, first described this visible structural

uniqueness of the limbal surface as ‘‘radial stripes’’, later as

‘‘limbal palisades of Vogt’’ (1). At the limbal zone, the Desce-

met’s membrane is missing, too, and endothelial cells of the

transitional zone (transitional cells) are larger and flatter than

those in the central cornea.

In the human embryo, the corneal epithelium is formed

by the 6th gestational week, from the surface ectoderm overly-

ing the detaching lens (2). At this stage, it consists of a two-

layered epithelium that is separated from the endothelium by

an acellular space, the so called primary stroma (3). Studies of

chick embryos proved that the corneal stroma and endothe-

lium originates from neural crest derived mesenchymal cells

(4), however, morphogenesis of the mesenchyma-derived tis-

sues in the human cornea is not clear yet. In situ formation

from mesenchymal tissue (5,6), as well as a three wave migra-

tion of neural crest cells giving rise to the iris, corneal endo-

thelium and stromal keratocytes (2,7) have been proposed.

Adult, or, in newer terminology tissue-derived/resident

stem cell populations are found in most adult tissues and are

able to maintain and regenerate the given tissue for a lifetime.

They are characterized by the following properties: (i) self-

renewal, that is, during cell division, at least one of the daugh-

ter cells remains a stem cell; (ii) undifferentiated state, but

high differentiation potential—implying the ability to differ-

entiate into all cell types of their home tissue and possibly into

other cell types as well, when appropriate (experimental) cir-

cumstances are provided; (iii) Slow cell cycle, that is, most of

the time, stem cells are in a growth arrested state, however,

they can enter cell cycle on demand (e.g., tissue injury), and

give rise to a differentiating and highly proliferative progeny

(progenitor cells); (iv) requirement for a stem cell niche—

stem cells usually reside in a microenvironment that provides

external factors necessary for maintaining stem cell properties

and functions, often referred to as ‘‘stemness’’. For reviews see

(8,9). Progenitor cells are similar to stem cells in most aspects

except they do not renew themselves and thus their population

becomes terminally differentiated after a limited, though

sometimes enormous number of cell divisions. Although not a

consensus yet, stem and progenitor cells are sometimes collec-

tively termed precursors, indicating that both can be expanded

under appropriate circumstances.

In the adult cornea, stem cells reside in the limbal area.

The existence of epithelial stem cells in the limbus has been

proposed in 1971 by Davanger and Evensen and the investi-

gation of limbal epithelial stem cells (LESCs) greatly pro-

gressed since then. However, data suggesting the existence of

stromal and endothelial stem cells in the cornea have only

been published recently. In this review, we summarize the

present state of knowledge on the stem cells of the adult cor-

nea. Special emphasis is given to the latest progress in the

molecular characterization of LESCs. Current information on

putative stromal and endothelial stem cells is summarized as

well.

Figure 1. Localization of corneal stem cells. A: Histological section and tissue layers of the cornea. B: The corneal limbus is localized to the

corneoscleral border. The upper and lower regions most protected by the eyelids contain the Vogt’s palisades that apparently host most

of the corneal epithelial stem cells. C: Cross-section of the corneoscleral transition. The corneal epithelium is contiguous with the conjuc-

tiva, the corneal stroma transits into the sclera, whereas the corneal endothelium is linked with the trabecular meshwork. These transi-

tional zones together contain the majority of stem cells in the adult cornea.
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LIMBAL EPITHELIAL STEM CELLS

Localization

Limbal localization of corneal epithelial stem cells is

widely accepted today. Numerous experimental and clinical

observations support this hypothesis.

In 1971, Davanger and Evensen observed pigmented

epithelial migration lines moving from the limbal area toward

the central cornea during the healing process and proposed

that the limbal area could be the reservoir of the new epithelial

cells (10). Later, cell movement was observed centripetally

from the corneoscleral limbus during wound healing (11) and

the measured median distance migrated by marked epithelial

cells was about 17 microns per day (12).

The second evidence of limbal epithelial stem cells was

provided by Cotsarelis who detected label-retaining cells in the

basal layer of the limbal epithelium. Following pulse labeling

of replicating DNA (with 3H-thymidine or BrdU), these cells

retain an easily detectable amount of label in their nucleus as

opposed to frequently dividing cells in which the amount of

label per cell decays quickly (13). Consecutive studies con-

firmed this finding, showing that the label retaining index

(LI—percent of tritiated thymidin incorporating cells) is more

than 20% in the limbal corneal region in contrast to the cen-

tral cornea where LI is less than 8% (14,15).

Cell culture studies showed that cells from the central

cornea generated mostly paraclones, i.e., terminated colonies

which could not be passaged more than twice, whereas cells

from the limbal area could proliferate for many generations

(80–100 doublings) and formed large holoclone colonies. The

peripherial cells formed meroclone colonies whose growth was

stopped after a relatively small number of divisions (16–18).

These cells are also referred to as transient amplifying cells

(TACs).

In animal experiments, surgical removal of the limbus

resulted in insufficient re-epithelization and conjunctival inva-

sion of the corneal surface (19). Clinical studies have shown

that limbal transplantation makes possible long-term restaura-

tion of the corneal surface in patients with limbal damage

(20,21). Also, most epithelial tumors of the ocular surface ori-

ginate from the limbal area (22–26).

Stem cells and their progeny exist millimeters apart in the

human cornea (17). Limbal stem cells reside in the basal layer

of the limbal epithelium and are interspersed with early tran-

sient amplifying cells (TACs). Cell differentiation occurs as

cells migrate in two directions, toward the surface epithelium

and toward the center of the cornea. Thus, TACs are found

mostly in the peripheral cornea, and most cells are terminally

differentiated in the central cornea, although the basal layer

contains TACs, even centrally. The recognition of the distinct

localization of stem cells and their progeny in the corneal epi-

thelium, their easy accessibility on the ocular surface, as well

as the transparency of the cornea allowing in vivo observation

of the putative LESCs and their niche, has made the corneal

epithelium an ideal system for the investigation of epithelial

stem and transient amplifying cells (27). In addition, it

allowed clinicians to develop corneal epithelial stem cell trans-

plantation procedures for the treatment of so far non curable

ocular surface diseases associated with limbal stem cell defi-

ciency, even though a definitive LESC marker still remains elu-

sive (28).

In the wounded cornea, such spatial separation of differ-

ent cell types may not be apparent, at least when examined

with the currently available methods. In rabbit models, Park

et al. showed an increase in side population cell numbers in

the limbal area on Day 1 after wounding, followed by an

increase of colony forming efficiency of the central corneal

cells on Day 5 (29). In a human cornea organotypic model,

central corneal cells showed a faster proliferative response after

wounding than limbal epithelial cells, and they could effec-

tively regenerate central wounds in the absence of limbal

epithelial cells (30). These results indicate that immediate

wound healing response is mainly TAC function. Activation of

LESCs takes more time, 24 h in rabbits and perhaps more in

humans, and is followed by an additional increase of central

corneal cell proliferation. It is not clear whether such an

increase in proliferative potential is associated with a less dif-

ferentiated phenotype of the central corneal cells.

Characteristics of Limbal Epithelial Stem Cells

Cell size and morphology. Resident stem cells in various

adult tissues have an undifferentiated phenotype, and are

characterized by small cell size and high nucleus to cytoplasm

(N/C) ratio. Presumably, the nuclear size and DNA content is

constant but the volume of cytoplasm is changed as new pro-

teins start to appear in the differentiation process (31). Row-

den detected a fourfold increase in cytoplasmic volume as cells

passed from the basal to granular layers in the epidermis. Dur-

ing this transition, nuclear volume did not decrease signifi-

cantly (32). In 1985, Barrandon showed that the size of kerati-

nocytes determines their colony forming ability and keratino-

cytes larger than 20 lm lose their colony forming capacity

(33). The same features seem to hold true for corneal epithelial

stem cells.

In vivo confocal microscopic studies showed that limbal

basal cells have smaller diameter (around 10 lm in all studies),

larger N/C ratio, and have higher cell densities than central

corneal or limbal suprabasal cell layers (34–37). Transmission

electron microscopy showed small-roundish cells at the bot-

tom of the palisade rete ridges with large nuclei containing

heterochromatin-rich DNA and a barely detectable nucleolus,

scarce cytoplasm with delicate melanin granules and a fine

basement membrane through which cytoplasmic invagina-

tions from the underlying stroma could be observed (38,39).

In a recent study, cells with the smallest size (10–16 lm)

expressed the highest amount of the putative stem cell markers

DNp63 and ABCG2, both at mRNA and protein levels,

included among themselves the most label-retaining (side

population) cells, and had the highest clonogenic capacity in

culture (40).

Slow cycling and self-renewal. Under normal conditions,

stem cells are quiescent. They rarely undergo cell division, and
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the resulting daughter cells, the transient amplifying cells

(TACs) multiply to give rise to high numbers of differentiated

cells, thus ensuring normal tissue homeostasis (8). This low

mitotic activity of stem cells further protects their integrity by

decreasing the possibility of DNA damage. During mitosis,

stem cells renew themselves, e.g., at least one of the daughter

cells preserves its ‘‘stemness’’. However, stem cells can exhibit

an impressive proliferative capacity upon tissue injury or in

culture (41–46). The slow cycling of limbal stem cells allowed

their detection as label retaining cells (13).

Recently, the role of some molecules has been proposed

in the self-renewal of LESCs. Barbaro et al. showed that

CCAAT enhancer binding protein delta, C/EBPd, colocalized
with Bmi-1 and DNp63a in the limbal epithelial cells and

identified quiescent LESCs that formed holoclones in culture.

Forced expression of C/EBPd reversibly inhibited the growth

of limbal colonies and increased cell cycle length. C/EBPd is

suggested to exert its functions by activating the p27kip1 and

p57kip2 genes and inhibiting the expression of p16INK4A and

involucrin genes (47).

Plasticity. In accordance with the ectodermal origin of the

corneal epithelium, differentiation of LESCs into various cell

types of the epithelial and neuronal lineages has been demon-

strated. Corneal cells could be differentiated into hair follicle

cells when placed over hair forming embryonic dermis. Differ-

entiation occurred in two steps: corneal cells first dedifferen-

tiated to show limbal basal cell characteristics, then begun to

express markers of epidermal differentiation and formed hair

follicle-like structures (48–50). Subpopulations of limbal

epithelial cells that acquired nestin positivity under the effect

of mitogens in culture differentiated into functional neuronal

cells (51,52). These cells could be further differentiated along

the rod photoreceptor lineage in vitro and in vivo, suggesting

that LESC can serve as a source for the treatment of retinal de-

generative diseases such as age related macular degeneration

or retinitis pigmentosa (53). The molecular basis of these tran-

sitions is not understood, although it was supposed that

blocking the BMP signaling is important for neuronal differ-

entiation of LESC (52) and the role of the Wnt/b-catenin
pathway was suggested in differentiation into hair follicle cells

(50,54).

In ex vivo cultured rabbit and human cornea limbal

explants, limbal epithelial cells migrated into the stroma and

showed changes suggesting that they underwent epithelial-

mesenchymal transition (54,55). There is no evidence to sup-

port that such transitions could occur in vivo. However, the

apparent plasticity of limbal epithelial cells in culture makes

these cells a promising therapeutic tool for neurodegenerative

and other diseases.

Molecular Markers of LESCs

Many molecules have been suggested to identify the basal

cell layer of the limbal epithelium or clusters of cells within it

and are thought to identify LESCs together with early TACs.

On the other hand, differentiation markers that are not pres-

ent in limbal basal epithelial cells can be used as negative mar-

kers for LESCs. Usually a combination of these markers is

used for the identification of putative stem cells in the limbal

epithelium. Positive LESC markers include cytokeratins Ck15,

Ck14, Ck19, NGF receptor TrkA, vimentin, integrins a6, a9,
b1, and b4. Negative markers are involucrin, connexins 43,

and 50, along with cytokeratins Ck3 and Ck12 [reviewed in

(56–62)]. A recent study has shown that integrin a9 positive

cells are located adjacent to label retaining limbal basal cells,

which in turn are negative for integrin a9. Therefore it was

concluded that integrin a9 identifies cells in close proximity of

the stem cells rather than LESCs themselves (63).

DNp63a. The p63 gene products are transcription factors

whose role is essential in maintaining the cell populations that

are necessary for epithelial development and morphogenesis.

The p63 gene produces full length (TAp63) and N-terminally

truncated (DNp63) transcripts, each of which have a, b, and c
isoforms (64). P63 was shown to identify basal cells with high

proliferative potential in the skin (65). Later, high p63 content

was showed in limbal epithelial cells with high N/C ratio and

p63 was suggested as an LESC marker (18). It was also shown

that antibodies detecting all isoforms of p63 identified differ-

entiated cells as well (66). The isoform DNP63a was later

shown to identify epithelial stem cells, whereas b and c iso-

forms have been shown to promote epithelial cell differentia-

tion (67,68). At present, DNp63a is considered as a reliable

marker of both resting and activated limbal epithelial stem

cells (47).

ABCG2. Similarly to hematopoietic (69), skin and muscle

cells, limbal epithelial cells also yield a stem cell rich side

population (SP) when sorted after incubation with the

Hoechst33342 dye (70,71). SP phenotype has been attributed

to the function of the BCRP/ABCG2 transporter protein (72–

75). Cells from limbal explants expressing ABCG2 showed

high clonogenic potential and expressed high levels of

DNp63a, similarly to side population cells (76), therefore

ABCG2 was suggested as a LESC marker. In histological sec-

tions, ABCG2 antibodies label small clusters of cells in the ba-

sal limbal epithelium (Fig. 2A), and �10% of the limbal

epithelial cells are stained. On the other hand, only about 3%

of the cells appear ABCG2 positive when measured by flow

cytometry after isolation of single limbal epithelial cells by dis-

pase II-trypsin digestion of corneas (76,77). Both numbers are

higher than the proportion of LESCs, which is estimated to be

less than 1% based on the fraction of the side population.

These differences may be explained by cytoplasmic (nonfunc-

tional) expression of ABCG2 in some limbal epithelial cells

(77) and indicate that ABCG2 labeling with antibodies not

only marks LESCs but possibly also some transient amplifying

cells.

C/EBPd and Bmi-1. Bmi-1 is a member of the polycomb

gene family, and was shown to be essential for the self-renewal

of haemopoietic and neural stem cells (78,79). In 2006, it was
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shown that Bmi-1 mRNA was expressed in the slow cycling

side population cells of the limbal epithelium and was barely

detectable in the central cornea, and it was suggested that

Bmi-1 should be used as a LESC marker (80). In 2007, Bar-

baro et al. showed that C/EBPd, together with Bmi-1 and

DNp63a identifies resting limbal stem cells. C/EBPd and Bmi-

1 antibodies colocalized in histological sections and showed

staining in �10% of limbal basal epithelial cells. Upon activa-

tion (wounding), some of the cells switched off C/EBPd and

Bmi-1 expression but not DNp63a which continued to be

expressed in proliferating basal epithelial cells (activated stem

cells and TACs). Although Bmi-1 is a marker that can identify

several types of adult stem cells (78,79), the action of C/EBPd
appears highly species and cell context specific and may not be

exerted in other squamous epithelia apart from the limbal epi-

thelium (47).

New potential stem cell markers identified in proteomic

and mRNA profiling studies. The spatial separation of stem

and transient amplifying cells in the limbal and central cornea

allows an easy way to produce a stem cell enriched (limbal)

and stem cell free (corneal) cell population. In recent years,

several research groups, including ourselves, compared subsets

of mRNAs and proteins expressed in the limbal and central

cornea by the currently available high throughput nucleic acid

profiling and proteomic techniques (81–87). Several of these

molecules have been described as potential stem cell markers

(Table 1). Immunohistology confirmed the presence of epire-

gulin, cytokeratins 14 and 15, p-cadherin, wnt-4, superoxide

dismutase 2 (SOD2) and heatshock protein 70 (HSP70.1) in

limbal basal epithelial cells. CK15, P-cadherin, wnt-4 and

SOD2 identify small clusters of cells in the basal limbal epithe-

lium that are probably closely related to LESCs. Cytokeratin

15 mRNA was found to be upregulated in the limbus by all

but one of the cited studies, and also in hair follicle bulge stem

cells (89,90). Although not confirmed by qRT-PCR or immun-

histology, inhibitor of DNA binding molecule 4 (ID4), spon-

din-1, and catenin a2 mRNAs were found to be upregulated at

least by two groups. ID4 was shown to promote G1/S phase

transition in neuronal progenitors of the developing brain

(91). Spondin-1 acts as a contact repellent molecule in neuro-

genesis (92). Catenin a2 regulates tight junction assembly

(93). Interestingly, some molecules that have been shown to

be upregulated in the limbus, were found in high amounts in

the human amnion membrane by proteomic analysis. These

are the basement membrane molecule collagen types VIa1 and
a2; transglutaminase 2, a protein with various functions in

extracellular matrix organization and cell-matrix interactions;

as well as HSP70, superoxide dismutase, calizzarin, and

integrin a6. These molecules may contribute to the cell growth

promoting properties of human amniotic membrane, also

used in corneal epithelial stem cell transplantation (94). Other

molecules, such as tissue inhibitor of metalloproteinase 2

(TIMP2) and disabled 2 (Dab2) were shown in hair follicle

bulge stem cells indicating a more general role of these

molecules in epithelial stem cell regulation.

The Limbal Epithelial Stem Cell Niche

The particular microenvironment of stem cells (SCs),

made up of extracellular matrix components, other resident

cells and the products and signals they release, is known as a

stem cell niche and is important for the modulation of SCs

(95,96). A stem cell niche is also supposed to be a site where

structural characteristics afford stem cell protection. Examin-

ing the niche in details requires the exact identification of SCs

(97,98). Lack of specific LESC marker(s) renders the investiga-

tion of the limbal stem cell niche difficult.

Experiments indicate the role of the limbal stroma in

stem cell niche formation. When limbal and corneal epithelial

sheets were recombined with either limbal stroma or corneal

stroma, the phenotype of the resulting epithelium unequivo-

cally showed that limbal stroma modulated cell fate in the

Figure 2. ABCG2 labeling of the palisades of Vogt in human corneal limbus. A: Basal epithelial cells of the palisades (*) and a putative

limbal epithelial crypt (**). Field of view: 318 3 318 lm. B: Many stromal cells are also positive. Field of view: 94 3 94 lm. ABCG2: Green;
nuclei (PI stain): red.
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direction of ‘‘stemness’’, while corneal stroma promoted differ-

entiation and apoptosis (99). Niche structures are located in

the limbal palisades of Vogt, which are radially oriented stro-

mal ridges intersected with epithelial rete pegs, observable

over the superior and inferior limbus, and missing temporally

and nasally. The epithelium at the palisades is enriched in

stem cells; targeted biopsies of limbal regions rich in palisades

yield higher numbers of clonogenic LESCs in culture (37). In

the region of limbal palisades, LESCs are in contact with a

loose stroma without an intervening Bowmans’ layer, thus,

direct interaction of epithelial and stromal cells is possible. In

the basal layers of the interpalisade rete ridges, small, round

cells, exhibiting morphological features of primitive stem cells

were shown (16,38,100,101). Protection of stem cells is

thought to be fulfilled by three attributes of the palisades: they

are situated in those parts of the cornea that are most pro-

tected by the eyelids; they contain melanocytes that safeguard

stem cells from UV radiation by the transfer of melanin gran-

ules (35,38,102,103); in addition, protection from mechanical

shear forces is provided at the bottom of the rete pegs. The

palisade ridge regions contain blood vessels that can provide

nutrients and other supportive factors for the SCs

(1,39,58,101).

Recently, three anatomical structures were identified

within the palisades of Vogt containing high numbers of puta-

tive stem cells, thus considered as putative stem cell niches.

Table 1. Putative molecular markers of corneal limbal epithelial cells from recent microarray studies

MOLECULE SOURCE REFERENCE

Confirmed presence in limbal basal cells by immunohistology

Epiregulin Frozen sections of mouse cornea, laser capture

microdissection

(85)

Wnt-4 Human fetal cornea and primary cultures of adult

human limbal epithelial cells

(87)

Cytokreatin 14 Human fetal cornea and primary cultures of adult

human limbal epithelial cells

(87), Tak�acs et al., unpublished

p-cadherin Human fetal cornea and primary cultures of adult

human limbal epithelial cells, human limbal

epithelial scrapings

(87), Tak�acs et al., unpublished

Cytokeratin 15 Human fetal cornea and primary cultures of adult

human limbal epithelial cells, rat cornea

(81,84,87), Tak�acs et al., unpublished

Superoxide dismutase 2 Human limbal epithelial scrapings (81)

Molecules detected by at least two groups in mRNA expression arrays

ID4 Human limbal epithelial scrapings (88), Tak�acs et al., unpublished

Spondin-1 Human limbal epithelial scrapings, frozen sections of

mouse cornea

(85), Tak�acs et al., unpublished

S100A8 Human limbal epithelial scrapings (81), Tak�acs et al., unpublished

Catenin-a2 Human fetal cornea and primary cultures of adult

human limbal epithelial cells, frozen sections of

mouse cornea

(85,87)

Molecules detected in limbal epithelial cells and also in human amniotic membrane

Calizzarin Rat limbal epithelial cells, intact and denuded

human amniotic membrane

(82,84)

Collagen VI, chains a1, a2 Frozen sections of mouse cornea, intact and

denuded human amniotic membrane

(82,83,85)

Transglutaminase 2 Rat cornea, denuded human amniotic membrane (83,84)

Heat shock protein 70 Human limbal epithelial scrapings, intact and

denuded human amniotic membrane

(81–83)

Superoxide dismutase Human limbal epithelial scrapings, intact human

amniotic membrane

(81,82)

Integrin a6 Human fetal cornea and primary cultures of adult

human limbal epithelial cells, intact human amniotic

membrane

(82,87)

Molecules detected in limbal epithelial cells and also in hair follicle bulge stem cells

Tissue inhibitor of metalloproteinase 2 Frozen sections of mouse cornea, mouse hair follicle

bulge cells

(85,89)

Disabled 2 Frozen sections of mouse cornea, mouse hair follicle

bulge cells

(85,89)
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One such structure, termed limbal epithelial crypt (LEC) was

shown by serial sectioning of the limbal area. LECs appear as

solid chords of epithelial cells, extended from the peripheral

aspect of the undersurface of an interpalisade rete ridge and

are continued either parallel with the ridge under the conjunc-

tiva or circumferentiallly along the limbus, at right angles to

the palisade. LECs contain high numbers of epithelial cells

expressing the putative LESC markers ABCG2 (Fig. 2A, see the

label **), p63, cytokeratins 14 and 19, vimentin and connexin

43, have a high nucleus to cytoplasm ratio and are connected

to the underlying basement membrane via cytoplasmic projec-

tions (104,105).

Another study used in vivo confocal microscopy, as well

as transmission and scanning electron microscopy to investi-

gate human limbal structures. Two other putative niche struc-

tures, termed limbal crypts (LCs) and focal stromal projec-

tions (FSPs) were described in this latter study. LCs are cir-

cumscribed downward projections of the limbal epithelium

that open to the corneal surface and are in close association

with the limbal vasculature. FSPs are figerlike projections of

stroma containing a central blood vessel that are surrounded

by small, tightly packed epithelial cells. Highest numbers of

p63a and ABCG2 positive epithelial cells, suspected as stem

cells, were observed in the basal epithelial layers of LCs and

FSPs (37).

Little is known about the molecular mechanisms control-

ling limbal niche functions. Cytokines and the interaction of

cells with extracellular matrix components have been sug-

gested to play an important role in niche regulation. Accord-

ing to their interaction with surrounding cells, cytokines in

the limbus have been divided into three groups by Li and

Tseng: type I cytokines are released by the epithelium and their

receptors are found mainly in stromal cells (TGFb, IL-1b,
PDGFb). Type two cytokines and their receptors are found

both in stromal and epithelial cells (IGF1, TGFb1, TGFb2,
bFGF). Type III cytokines are released by the stroma, whereas

their receptors are found in the epithelium (KGF, HGF) (106).

A recent study identified further type I (NGF, GDNF) type II

(NT-3, NT-4) and type III (BDNF) cytokines in the human

cornea (107). Interestingly, many of these factors (KGF, HGF,

NGF, TGFb1, TGFb2, bFGF) have been identified in human

amniotic membrane, which can support in vitro LESC growth

in the absence of feeder cells.

Basement membrane components in the limbal area dif-

fer from those in the central cornea (108). The basement

membrane in the limbal area shows increased immunoreactiv-

ity for laminins a1, a2, b1, and c3, agrin, BM40/SPARC and

tenascin-C, which colocalize with basal cells positive for

ABCG2, p63, and CK19 (61). Some ECM components such as

tenascin-R, chondroitin-sulphate, versican, and vitronectin

were seen underneath the basement membrane of vimentin

positive basal epithelial cells (61). These components are

known to occur at places where epithelial-mesenchymal tran-

sitions may take place under physiological and pathological

conditions (109,110). Interestingly, such epithelial-mesenchy-

mal transition was observed during in vitro culturing of rabbit

and human limbal corneal explants (54,55). It is not known at

present whether such a transition might have any significance

in vivo.

Isolation of LESC

Isolation by fluorescence activated cell sorting. Although a

surface marker for limbal epithelial stem cells has not been

defined yet, several methods have been used to isolate stem

cells from the limbal epithelium by FACS. Isolation of a side

population based on Hoechst33342 dye exclusion that com-

prised less than 1% of all the cells has been reported by several

groups (29,70,76,77,80,111,112). Sorting the side population

revealed species specific differences. In rats, a side population

could be isolated also from the central cornea in addition to

the limbal SP. However, central SP cells neither showed stem

cell characteristics, nor were ABCG2 positive, indicating that

several types of transporters may take part in Hoechst33342

dye efflux in the rat cornea (111). In addition, the presence of

ABCG2 positive, slow cycling Langerhans cells was demon-

strated in the limbal basal epithelium of rats, implying that

cells sorted based on ABCG2 expression or Hoechst dye exclu-

sion may yield a heterogeneous population of rat limbal stem

cells (113).

In the human limbus, epithelial SP cells are slow cycling

and express Bmi-1, nestin, and Notch-1 mRNA, indicating

their quiescent stem cell phenotype (77,80,112).

Similar to keratinocytes, high integrin a6 and low CD71

expression identifies a subpopulation enriched in stem and

progenitor cells among limbal epithelial cells. The integrin

a6bright/CD71low cell population was rich in small cells, had a

high clonogenic capacity, and expressed high levels of the stem

cell markers ABCG2, Bmi-1, and DNp63 (114).
Most recently, a new cell surface marker, RHAMM/

HMMR was described which was completely absent from cells

of the basal epithelial layer of the limbus. Cell selection based

on Hoechst exclusion and lack of cell surface RHAMM/

HMMR expression resulted in increased colony forming effi-

ciency compared to negative selection using RHAMM/HMMR

alone or positive selection using Hoechst33342 on its own

(115).

Isolation by centrifugation. In a recent work, mouse limbal

epithelial cells were separated on a Percoll gradient. The den-

sest fraction (less than 7% of original cells) contained small

nonspontaneously proliferating cells, positive for p63 that

acquired a high proliferative activity when cultured on a 3T3

feeder cell monolayer, indicating the presence of quiescent

stem cells in this fraction (116).

Culturing of LESC

To maintain limbal epithelial cells in culture, a feeder

layer of fibroblast cells (3T3 cells) is needed, similarly to other

epithelial cells (117). For research use, culture on 3T3 cells in

SHEM (supplemented hormonal epithelial medium, Table 2.)

is the generally accepted method. 3T3 cells are either lethally

irradiated or growth arrested with mitomycin C and then

seeded on tissue culture dishes at 2 3 104 cells/cm2 (117,118).
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The base medium is Dulbecco’s minimal essential me-

dium (DMEM) and Ham’s F12 mixed 1:1. The components

minimally necessary (119) for ex vivo expansion of limbal

epithelial cells on denuded human amniotic membrane are

listed in Table 2.

In the past 10 years, after the pioneering work of Pelle-

grini et al. (120), the transplantation of ex vivo expanded lim-

bal epithelial cells is more and more widely used for the treat-

ment of limbal stem cell deficiency. Methods and results of

limbal epithelial stem cell transplantation have been reviewed

elsewhere (28,121). In this section, we discuss some aspects of

the cell culture methods used in clinical applications. When

limbal epithelial cells are cultured for clinical use, it is

intended that all animal derived products are excluded from

culturing media, to avoid transmission of animal derived anti-

gens or viral diseases. The use of human amniotic membrane

instead of 3T3 cells, as well as replacement of FCS with the

patients’ autologous serum in the culture media was introduced

by some groups (118,119,122). The human amniotic mem-

brane (AM) may be intact (iAM, containing devitalized amni-

otic epithelium) or denuded (dAM, without epithelium) (123).

Several methods of culture are used in clinical applica-

tions. Explant cultures use little (2–3 mm2) pieces of limbal

tissue from biopsy that is placed on amniotic membrane

(AM) fixed on a tissue culture insert or folded around a glass

slide. The tissue culture dish may or may not contain devita-

lized 3T3 cells. Usually the first outgrowth of cells is used for

transplantation, and the AM itself is used as a carrier in the

transplantation process. In single cell cultures, epithelial cells

are released form the limbal biopsy specimen by trypsin or

combined dispase II-trypsin digestion (124). Subsequently,

single cells are seeded either onto AM serving as a carrier, or

onto growth arrested 3T3 cells. In the latter case, colonies of

cells are passaged on 3T3 cells and, when confluent, dispase

digested and placed on a carrier that is transplanted onto the

ocular surface. Paraffin gauze, contact lenses (120), collagen

shields (125), temperature sensitive biopolymers (126), fibrin

gels (127,128), and anterior lens capsule (129) were used as

carriers so far.

Although the basis of applying human amniotic mem-

brane in transplantation procedures is its ability to support

limbal epithelial cell growth in culture, this growth is arrested

after three passages on intact AM, indicating that stem cells

are not preserved on iAM (54,130). Probably the same applies

for dAM as well, since limbal epithelial cells cultured on iAM

showed a less differentiated phenotype (exhibiting less cyto-

keratin3, connexin43 and 50 expression by immunostaining

and immunoblots) than those cultured on dAM, with an in-

termediate degree of differentiation of LESCs on dAM in the

presence of 3T3 feeder cells (131). The evident, although lim-

ited growth supporting ability of human amniotic membrane

may be owed to its growth factors and basement membrane

components, many of which, including NGF, KGF, HGF,

bFGF, TGFb, and integrins b1 and b4 have been shown to be

present in the limbal epithelium and stroma as well [reviewed

in (123)]. Moreover, AM also has anti-inflammatory and anti-

angiogenic effects (132). Recently, amniotic membrane was

shown to induce overexpression of the IL-1 cytokine receptor

antagonist (IL-1RA) in LESCs, and its anti-apoptotic effect

was also demonstrated (133).

Using 3T3 cell layers may better preserve stem cells in sin-

gle cell culture (118), however, in this case limbal epithelial

cells are in contact with animal cells. Recently, a human amni-

otic epithelial cell line (134) and human embryonic fibroblasts

(135) were successfully used as a feeder layer for LSCs, thus

forecasting the possibility of generating corneal epithelial

sheets for transplantation under better defined, standardized

conditions without the use of animal material.

At present, the proportion of LESCs transplanted by any

of the methods is not known, since epithelial sheets were not

examined for the presence of stem cell markers, such as

DNp63 or ABCG2 before transplantation. Similar clinical suc-

cess rates with the use of the different culture techniques indi-

cate that other processes, such as regeneration of the stem cell

niche and repopulation by remaining stem cells, even perhaps

by bone marrow derived cells, is possible. Regeneration of the

host’s own stem cell reservoir is supported by the fact that

only the host’s epithelial cells were found on the corneal sur-

face 6–9 months after LESC allotransplantation (136).

STROMAL STEM CELLS

In 2005, isolation of murine and bovine corneal stromal

stem cells by sphere forming assay was reported by two inde-

pendent groups (137,138). In the same year, isolation of stro-

mal stem cells from human cornea was also reported (139). In

this latter study, some stromal cells have shown ABCG2 posi-

tivity (see also Fig. 2B). Based on this observation, the side

population was selected from the cells released from the cor-

neal stroma by digestion with collagenase and hyaluronidase.

In culture, these side population cells showed clonal growth

Table 2. Supplements of the SHEMmedium for ex vivo

expansion of limbal epithelial cells

Fetal bovine serum (%) 5–10

Patient’s autologous serum (%) 10

EGF (ng/ml) 5–10

Insulin (ng/ml) 2.5–5

Transferrin (lg/ml) 5

Sodium selenite (ng/ml) 5

Hydrocortisone (lg/ml) 0.1–0.5

Cholera toxin subunit A (ng/ml) 30–100

DMSO (%) 0.5

Triiodothyronine (nmol/l) 2

Antibiotics

Penicillin/streptomycin (IU/l) or 10

Gentamycin (lg/ml) 50

Antimycotic

Amphotericin B (lg/ml) 1.25

The base medium is Dulbecco’s minimal essential medium

(DMEM) and Ham’s F12 mixed 1:1. The components minimally

necessary (119) for ex vivo expansion of limbal epithelial cells on

denuded human amniotic membrane are set in bold.

REVIEW ARTICLE

Cytometry Part A � 75A: 54�66, 2009 61



and could be differentiated to express keratocyte, chondro-

genic and neurogenic markers (139). The same group has con-

comitantly showed that while these undifferentiated corneal

stromal stem cells predominantly express generic stem cell

related genes (Bmi-1, Kit, Notch-1, Six2, Pax6, ABCG2,

Spag10, p62/OSIL) in adherent cultures, when passaged in

suspension in serum free medium with FGF2 and insulin, they

form spheroid pellets, in which keratocyte-like cells secrete an

ordered ECM and express mRNAs of known (keratocan,

PTGDS, ALDH3A1) and potential (FLJ30046/SLAIN, CxAdR,

PDK4, MTAC2D1, F13A1) keratocyte markers (140).

Multipotent, fibroblast-like cells were isolated from lim-

bal stroma by other groups as well (141,142). In the earlier

study, after enzymatic digestion of de-epithelized stroma of

limbal explants, stage specific embryonal antigen 4 (SSEA-4)

positive cells were sorted by MACS. The isolated multipotent

fibroblast-like cells showed a unique marker profile (CD342,

CD452, CD1232, Cd1332, CD142, CD1062, HLA-DR2/

CD311, SSEA-41, CD731, CD1051), different from that of

bone marrow mesenchymal (143,144) or other adult stem cells

but similar to that of embryonic stem cells (Oct-41, Sox-21,

Tra1-601, Tra1-811) (141). This marker profile is quite similar

to that of very small embryonic-like stem cells of the adult

humans (46). The other group has propagated the fibroblast-

like outgrowth from limbal explants which could be observed

after removing the epithelial cells that preceded them in the

outgrowth process. These fibroblast-like cells also formed

spheroids in culture, were multipotent and exhibited a

mesenchymal stem cell-like surface marker phenotype

(CD1051, CD1061, CD541, CD1661, CD901, CD291,

CD711, Pax61/SSEA-12, Tra1-812, Tra1-612, CD312,

CD452, CD11a2, CD11c2, CD142, CD1382, Flk12, Flt12,

VE-cadherin2) (142).

The presence of bone-marrow derived cells in the cornea

was shown when irradiated wild type mice were transplanted

with bone marrow or hematopoietic stem cells of GFP expres-

sing transgenic mice. Most of these cells differentiated into

antigen presenting cells in the host’s cornea and only a small

percentage of BM derived cells represented other (unidenti-

fied) cell types (145,146). Bone marrow derived cells formed

approximately half of the pericytes but none of the endothelial

cells of the new vessels in a mouse model of experimental cor-

neal neovascularization (147). Recently, bone marrow derived

progenitor cells were shown to promote wound healing and

re-epithelization in alkali injured rabbit corneas (148,149).

Yoshida et al. (138) isolated a subset of cells termed

neural crest derived corneal precursors (COPs) from stromal

cells of adult mice. These cells showed side population charac-

teristics, were multipotent, clonogenic (sphere forming), and

expressed various adult stem cell markers (nestin, Notch-1,

Musashi-1, ABCG2). Experiments with transgenic mice

proved that limbal bone marrow derived cells and COPs are

two distinct cell populations and that COPs have a neural crest

origin, which was also confirmed by the expression of the em-

bryonic neural crest markers Twist, Snail, Slug and Sox-9.

COPs expressed surface markers Sca-1 and CD34 and were

negative for CD45 and c-kit.

Altogether, these results indicate that bone marrow

derived cells mainly act as enhancers of wound healing and

neovascularization, and take part in the immunological

defense of the cornea. On the other hand, corneal stromal

stem cells and COPs may serve as stem cells in the maintenance

of the mesenchyma-derived parts of the cornea. As both cell

types are located mainly in the peripheral cornea, interactions

between them are possible. Understanding these interactions,

as well as elucidating the behavior of these cell types under

physiological and pathological conditions will greatly increase

our knowledge on corneal wound healing and regeneration.

ENDOTHELIAL STEM CELLS

Although human endothelial cells can be grown in cul-

ture, it is believed that these cells cannot undergo cell division

beyond the age of 20 in vivo (150). Nonetheless, starting from

2005, some studies indicating the presence of pluripotent pre-

cursors/putative stem cells in the human corneal endothelium

have been published. In 2005, Whikehart observed that pe-

ripheral corneal endothelial cells incorporate BrdU indicating

mitotic activity, moreover, the number of BrdU incorporating

cells increased upon wounding (151). In a sphere forming

assay, Yokoo et al. isolated endothelial cell colonies from

human corneal endothelial cells that expressed neuronal and

mesenchymal markers. These cells had a limited self-renewing

capacity as indicated by failure to form spheres by the third

passage, therefore are considered as progenitors. Differentiated

adherent progeny of the sphere colonies cultured on fetal bo-

vine endothelium ECM showed corneal endothelial cell-like

morphology and pump functions (152). Amano et al. isolated

similar sphere colonies from the human and rabbit endothe-

lium and showed that the sphere forming capacity of the pe-

ripheral endothelium was significantly higher compared to the

central endothelium in rabbits (153). In 2007, McGowan et al.

showed that cells from the trabecular meshwork and peripheral

endothelial cells (transition zone) expressed nestin and telo-

merase and further stem cell and differentiation markers (oct-

3/4, wnt-1, Pax-6, Sox-2) were seen in these structures after

wounding (154). These experiments strongly support the exis-

tence of endothelial stem cells, residing perhaps in the trabecu-

lar meshwork and the periphery of the corneal endothelium.

The factors that inhibit proliferation of these cells in vivo

are not fully understood at present, although the role of con-

tact inhibition and TBFb2 has been proposed (155). Transport

functions of the endothelium are essential in maintaining cor-

neal clarity. The in vivo observed postmitotic properties of

this tissue make it highly vulnerable during surgical manipula-

tions, and corneal endothelial cell loss due to cataract surgery

or degenerative diseases is a leading cause of corneal trans-

plantations. Hence, the pathways regulating endothelial quies-

cence versus proliferation have great potential as eventual

therapeutic targets.

Based on the sphere forming properties, common neural

crest origin, and the presence of some markers common with

COPs and corneal stromal stem cells (nestin, oct-3/4, Pax-6,

Sox-2), it can be hypothesized that corneal endothelial and

stromal stem cells/COPs may form a common reservoir in the
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cornea, and transition from one lineage to the other might be

relatively easy. However, there is no experimental evidence for

this as yet. A summary of the major stem cell types found in

the adult cornea is provided in Table 3.

PERSPECTIVES

Corneal stem cell research has seen great advances in the

past few years. The use of cultured limbal epithelial stem cells

in the treatment of ocular surface diseases has become a widely

accepted method. To improve the results of this intervention,

as well as to properly exploit the recent advances of corneal

stromal and endothelial stem cell research, many questions

have to be answered. It is not known at present, what percent-

age of the transplanted cells are stem cells during the trans-

plantation of ex vivo expanded limbal epithelial cells. The fact

that host derived epithelial cells cover the corneal surface of

grafted patients after 9 months raises the possibility that not

the stem cells themselves, but reestablishment of the host’s

stem cell niche or reactivation of his/her own damaged stem

cells is somehow involved in the healing process (136). To

understand these phenomena, a better knowledge of the cor-

neal epithelial stem cell niche functions, as well as elucidation

of the role of bone marrow derived cells in supporting corneal

wound healing is necessary.

Development of new therapeutic strategies that bring

into play the regenerative potential of cornea specific stromal

precursor cells may provide therapeutic tools that make possi-

ble the regeneration of corneal ulcers and injuries with trans-

parent, avascular scars. The use of corneal stromal stem cells

in tissue ingeneering as components of artificial corneas is an

intriguing possibility, too (156). Endothelial replacement by

posterior deep lamellar keratoplasty from heterologous tissue

is an ongoing surgical procedure. The use of the patient’s own

endothelial stem cell reservoir to produce transplantable endo-

thelial sheets may reduce the risk of rejection and decrease dif-

ficulties related to immune suppression. The apparent flexibil-

ity of the different types of corneal stem cells may make them

a useful therapeutic tool in the treatment of degenerative dis-

eases of neural derived tissues of the eye, as well as of other

organs such as the brain, and perhaps even of the heart or the

pancreatic islets (141). On the other hand, stem cells from

other organs may serve as autologous sources of replacement

in ocular surface diseases, as has been shown in the case of

bone marrow mesenchymal cells, adult epidermal or oral mu-

cosal stem cells (126,132,157).
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